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Abstract. The reflection and transmission group delay times are systematically investigated in an asym-
metric single quantum barrier. It is reported that the reflection times in both evanescent and propagating
cases can be either negative or positive, depending on the relative height of the potential energies on the
two sides of the barrier. In the evanescent case where the energy of incident particles is less than the
height of the barrier, the reflection and transmission times in the opaque limit are both independent of the
barrier’s thickness, showing superluminality. On the other hand, in the propagating case where the energy
of incident particles is larger than the height of the barrier, the reflection and transmission times as the
periodical function of the barrier’s thickness can be greatly enhanced by the transmission resonance. It is
also shown that the transmission time and the reflection times for the two propagation directions in the
same asymmetric configuration satisfy the reciprocal relation, as consequence of time reversal invariance
in quantum mechanics. These phenomena may lead to novel applications in electronic devices.

PACS. 03.65.Xp Tunneling, traversal time, quantum Zeno dynamics – 73.23.-b Electronic transport in
mesoscopic systems – 03.65.-w Quantum mechanics

1 Introduction

The tunneling time of quantum particles through single or
multiple quantum barriers has drawn considerable atten-
tion [1–5] for last decades with the advent of techniques for
the fabrication of semiconductor tunneling devices, such
as single-electron tunneling transistors [6], resonant tun-
neling diodes [7], quantum cascade lasers [8], and resonant
photodetectors [9]. Theoretical investigations [10–17] and
experimental researches [18–27] have been attempted to
determine a physical tunneling time. However, there is still
lack of consensus about the existence of a simple expres-
sion for this time, due to the fact that there is no Hermi-
tian operator associated with it in quantum mechanics [4].
In recent years, the prospect of hight-speed nanoscale elec-
tric devices, based on the tunneling process, has brought
new urgency to the analysis of the tunneling time, as it
is directly related to the maximum attainable speed of
such devices [5]. There were several plausible tunneling
times proposed to this problem in terms of different oper-
ational definitions and physical interpretations. Different
approaches lead to the expressions for “tunneling time”,
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which imply the possibility of superluminal tunneling ve-
locities in certain cases [1,3].

Among various time scales, the group delay time (also
referred to as the phase time in the literature [1]), which
describes the motion of a wave packet peak [28], has
well-known superluminality [3–5]. It was found that the
group delay time for quantum particles tunneling through
a quantum barrier become independent of the thickness
of the barrier in the opaque limit. This phenomenon is
often termed as the “Hartman effect” [29]. With the ex-
perimental verifications of the Hartman effect, the super-
luminal group delay times have been directly measured in
a series of famous microwave or optical analogy experi-
ments [20–23]. It is important to note that these observa-
tions don’t violate “Einstein causality”. There is no causal
relationship between the peaks of the incident and trans-
mitted packets [10]. In addition, the group delay time has
been an interesting quantity in quantum coherent elec-
tron transport. The group delay statistics is intimately
connected to the dynamic admittance and other proper-
ties of microstructure [30]. The group delay time is also
related to the density of state [31,32]. Recently, the con-
cept of negative group delay has been extended to micro-
electronics [33], and the Hartman effect has been further
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investigated in the quantum ring geometry in present of
Aharanov-Bohm flux and the quantum networks [34].

In our previous works, we have elaborated that the
quantum particles traveling through a quantum well can
be advanced [35], so that the group delay in transmission
can be negative [36]. This counterintuitive phenomenon
has been demonstrated in a microwave analogy experi-
ment [37]. In reflection, the negative group delay time
has also been reported in asymmetric double-barrier quan-
tum wells [38,39] and their optical analogies [40,5]. It is
worthwhile to point out that the negative group delay
times, which were previously discovered in both reflection
and transmission, are always related to the quantum-well
structures. As a matter of fact, it will be shown that the
negative group delay times can also take place in a single
potential barrier of asymmetric configuration.

As inspired by the experimental observation of neg-
ative differential resistance [41] and above-barrier quasi-
bound state [42] in single quantum barrier, the tunnel-
ing times in different kinds of single barrier structures
have renewed much attention [43,44]. With some excep-
tions [45–47], most theoretical works on tunneling times
were merely discussed in a spatially symmetric barrier.
As described in the literature [47], the tunneling times in
the asymmetric barrier have much notable difference from
those in the symmetric one. Recently, Li and Spieker [48]
have investigated that the resonance-enhanced group de-
lay times can be negative as well as positive, when the
quantum particles are scattered by an asymmetric sin-
gle potential barrier, the height of which is less than the
energy of incident particles. Meanwhile, the theoretical
predictions have been tested in a microwave experiment.
However, the superluminal and even negative group delay
time in an asymmetric single potential barrier have rarely
been considered in the evanescent case where the energy
of incident particles is less than the height of the barrier.
It remains an open question.

The main purpose of this paper is to investigate the
transmission and reflection group delay times for quan-
tum particles through an asymmetric single potential bar-
rier systematically. Depending on the incidence energy of
quantum particles, the traversal of the particles through a
potential barrier can be divided into two cases, the prop-
agating and evanescent cases. It is reported in present pa-
per that the reflection times can be negative as well as
positive in both evanescent and propagating cases. The
negative reflection times are closely related to the relative
height of the potential energies on the two sides of the
potential barrier, and always correspond to a maximum
transmission coefficient that is larger than unity. In the
evanesce case, it is shown that the reflection and trans-
mission times are both independent of the barrier’s thick-
ness in the opaque limit, showing superluminality. On the
other hand, the group delay times as the periodical func-
tion of the barrier’s thickness can be greatly enhanced by
transmission resonance in the propagating case. As con-
sequence of the time-reversal symmetry in quantum me-
chanics, it is also shown that the reflection times for the
two propagation directions are quite different in the same

asymmetric configuration, while their average time equals
to the unique transmission time.

This paper is arranged as follows. We start in Sec-
tion 2 with the derivation of the group delay times in the
evanescent case, and establish their reciprocal relation in
the same asymmetric configuration. Thereafter, in Sec-
tion 3, the superluminal and even negative properties of
the group delay times are discussed in detail. In Section 4,
we turn to the resonance-enhanced group delay times in
the propagating case and present the relationship between
the resonant group delay times and quasi-bound states
lifetime in the barrier region. Finally, we summarize the
paper in Section 5.

2 Evanescent case

Consider a beam of particles propagating towards an
asymmetric rectangular potential barrier of the height,
V0, extending from 0 to a, as shown in Figure 1, where
the height of the potential energies on the left and right
sides of the barrier are V1 and V2, respectively. It is rea-
sonably assumed that V1, V2 < V0. First of all, what we
consider is such an evanescent case, in which the energy of
incident particles E is less than the height of the barrier,
V1, V2 < E < V0. When a beam of particles comes from the
left, let be ψin(x) = A exp(ik1x) the Fourier component of
the incident wave packet, where k1 = [2µ(E − V1)]1/2/�,
µ is the mass of incident particles. Denoting, respectively,
by B exp(−ik1x) and F exp[ik2(x − a)] the correspond-
ing Fourier components of the reflected and transmitted
wave packets, then the Schrödinger equation and bound-
ary conditions at x = 0 and x = a give r ≡ B/A =
(g2/g1) exp[i(φ1 − φ2)]and t ≡ F/A = (1/g1) exp(iφ1),
where k2 = [2µ(E − V2)]1/2/�, κ = [2µ(V0 − E)]1/2/�,
non-negative number g1 and real number φ1 are defined
by a complex number as follows,

g1 exp(iφ1) =
1
2

(
1 +

k2

k1

)
coshκa+

i

2

(
k2

κ
− κ

k1

)
sinhκa,

(1)
and non-negative number g2 and real number φ2 are de-
fined similarly by another complex number as follows,

g2 exp(iφ2) =
1
2

(
1 − k2

k1

)
coshκa+

i

2

(
k2

κ
+

κ

k1

)
sinhκa.

(2)
According to the definition (1), we have

tanφ1 =
1/κ− κ/k1k2

1/k2 + 1/k1
tanhκa (3)

which shows that the phase φ1 of the transmission coef-
ficient is symmetric between k1 and k2. Likewise, we can
obtain from the definition (2) that,

tanφ2 =
1/κ+ κ/k1k2

1/k2 − 1/k1
tanhκa, (4)

which shows that φ2 will change its sign by exchanging
k1 and k2. This property of asymmetry will have impor-
tant effect on the group delay time in reflection. We can
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Fig. 1. Schematic diagram of the particles propagating
through an asymmetric single barrier from the left in the case
where the energy of incident particles is less than the height of
the barrier.

also see from equations (3) and (4) that φ1 and φ2 can
be exchanged from one to another by changing the sign
of k1. This symmetry between φ1 and φ2 will simplify our
calculation for the group delay time.

It is noted that φ1 − φ2 is the total phase shift of the
reflected wave packet, and φ1 itself is the total phase shift
of the transmitted wave packet, rather than defined rel-
atively to a free particle in the same configuration. The
group delay time in reflection, according to stationary-
phase theory [14,28], is τr = �d(φ1 − φ2)/dE. The group
delay time in transmission, which is defined as the deriva-
tive of the phase shift φ1 with respect to particle’s energy
E [14,47], is given by,

τt = �
dφ1

dE
=
τsc

4g2
1

(
1 +

k2

k1

)

×
[
κ

k1
− k2

κ
+

(
1 +

κ2

k2
1

) (
k2

κ
+

κ

k2

)
sinh 2κa

2κa

]
, (5)

where τsc = µa/�κ is the “semiclassical time”, also re-
ferred as the Büttiker-Landauer time [10], taken for parti-
cles to travel through the barrier region. Substituting φ1

defined in equation (3) and noticing equation (5), we fi-
nally obtain τr = τt − τ0 for the group delay time of the
reflected wave packet, where

τ0 = �
dφ2

dE
= − τsc

4g2
2

(
1 − k2

k1

)

×
[
κ

k1
+
k2

κ
−

(
1 +

κ2

k2
1

) (
k2

κ
+

κ

k2

)
sinh 2κa

2κa

]
. (6)

As is apparent, the transmission time (5) shows an impor-
tant symmetry with respect to k1 and k2, resulting from
the property of φ1. On the contrary, τ0 is of asymmetry
between k1 and k2, because of the aforementioned prop-
erty of φ2. That is to say, the reflection times τr = τt − τ0
is closely related to the relative height of the potential en-
ergies on the two sides of the potential barrier. In other

words, the reflection times are dependent of the directions
of incident particles upon the barrier in the same asym-
metric structure.

In order to establish the universal relationship between
the transmission and reflection group delay times in the
same asymmetric configuration, we introduce transmis-
sion time τt and two distinct reflection times, τ+

r and τ−r ,
where τ+

r and τ−r stand for the reflection times for the
particles coming from the left and right side of the bar-
rier, respectively. Hence, the transmission time τt and the
reflection times τ+

r , τ−r are not independent but satisfy
the relation, τt = (τ+

r + τ−r )/2 [14,40]. This reciprocal
relation can be obtained from the unitary relation of one-
dimensional scattering matrix [4]. In fact, it is a general
result of the time-reversal symmetry that reflects the mi-
croscopic reversibility of quantum mechanics itself. In a
symmetric configuration, τ0 = 0 will vanish for k1 = k2,
so that τt = τ+

r = τ−r [10]. This indicates that the proper-
ties of the reflection times do result from the asymmetry
of the barrier, reflected in the phase difference between
the overall reflection coefficients for the two tunneling di-
rections.

3 Superluminal and negative properties

In this section, we are concerned with the superluminal
and negative properties of the group delay times in the
evanescent case. As obtained in previous section, the re-
flection time τr = τt − τ0 is quite different from the trans-
mission time τt in an asymmetric single potential barrier.
Noting that g2

2 < g2
1 , the magnitude of τ0 can be larger

than τt. Therefore, the reflection time τr = τt − τ0 can be
negative in evanescent case. To simplify the discussions,
we consider the negative property of the reflection time
in the case of k1 ∼ k2 and κ � k1. When k1 ∼ k2 and
κ � k2, the reflection time τr = τt − τ0 can be approxi-
mately simplified as

τr ≈ τsc

8g2
1g

2
2

[(
k2

κ
+

κ

k2

)
sinh 2κa

2κa
− k2

κ

]

×
[(

1 +
k2
2

κ2

)
sinh2 κa−

(
1 − k2

2

k2
1

)]
. (7)

It is seen from equation (7) that the factor
[(

1 +
k2
2

κ2

)
sinh2 κa−

(
1 − k2

2

k2
1

)]
,

can make the reflection time τr negative. Mathemati-
cally, the above factor is always positive when k2 > k1

(V1 > V2). This means that the reflection time always
shows positivity when k2 > k1 (V1 > V2). On the other
hand, this factor can be either negative or positive when
k2 < k1 (V2 > V1). Since the function sinhκa increases
rapidly with increasing the barrier’s thickness, the nega-
tive value will become positive beyond a critical barrier’s
thickness. That is to say, the negative reflection time oc-
curs only for a small barrier’s thickness. As a result, the
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condition k2 < k1 (V2 > V1) is not sufficient but necessary
for the reflection time to be negative. Next, the features
of the group delay times in reflection and transmission are
further discussed for the opaque and transparent barriers,
respectively.

(a) Opaque limit: When a � 1/κ with k1, k2 and
κ remaining finite, the transmission time in (5) has the
following form,

lim
κa→∞ τt =

µ

�κ

(
1
k1

+
1
k2

)
,

which is independent of the thickness a of the barrier.
So beyond a critical value of barrier’s thickness, τt will be
smaller than the barrier’s thickness divided by the vacuum
speed of light, showing superluminality. This is the so-
called Hartman effect [29,47]. In this limit, τ0 tends to

lim
κa→∞ τ0 =

µ

�κ

(
1
k2

− 1
k1

)
,

so that the reflection group delay time saturates in opaque
limit to a constant value,

lim
κa→∞ τr =

2µ
�k1κ

,

where κ is the decaying constant of the wave inside the
barrier region. It is indicated that the reflection time in
opaque limit also becomes independent of the barrier’s
thickness, which corresponds to the “Hartman effect” in
reflection. Since the penetration depth 1/κ is about or-
der of the wavelength 2π/k1, τr is about the order of
the period of the incident wave, h/(E − V1). This result
is in agreement with the universal time, which approxi-
mately equals to the reciprocal of the carrier frequency
or of the wave packet energy divided by the Planck con-
stant h [5]. When removing the asymmetry of the single
barrier, k1 = k2, the reflection and transmission times take
the same form, 2µ/�k1κ, as pointed out in reference [10].

(b) Transparent limit: When κa → 0, for the barrier
to be transparent, it is necessary that the thickness of the
barrier should be much smaller than the reciprocal of κ,
i.e. a � 1/κ. It is meant by this limit that the trans-
mission coefficient for the particles tunneling through an
asymmetric potential barrier approximately reaches max-
imum, thus the barrier shows the transparency. In this
limit, the group delay time in transmission takes the fol-
lowing form,

lim
κa→0

τt =
µa

�k1k2

k2
1 + k2

2 + k1k2 + κ2

k1 + k2
,

and the reflection time τr = τt − τ0 can be expressed by,

lim
κa→0

τr =
2µa
�k2

k2
1 + κ2

k2
2 − k2

1

,

which can be negative as well as positive. When k1 > k2

(V1 < V2), τr is negative. On the other hand, when k1 < k2

(V1 > V2), τr is positive. These results are consistent with
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Fig. 2. The dependence of the group delay time in transmis-
sion τt and the transmission coefficient T on the thickness a of
the barrier, where a is re-scaled to κa and the unit of � and m is
set to unity. The dashed curve corresponds to the transmission
coefficient T , where V0/E = 2, V1/E = 0.8, and V2/E = 0.9.
The dotted curve corresponds to the transmission probabil-
ity T , where V0/E = 2, V1/E = 0.9, and V2/E = 0.8. Here
the transmission time is also depicted by solid curve, which is
identical in such two cases as V1 > V2 and V1 < V2.

those previously obtained under the condition k1 ∼ k2 and
κ� k1. More interestingly, when the barrier’s thickness is
much smaller than 1/κ, the transmission coefficient T =
1/g2

1 reaches the maximum value as follows,

Tmax =
4

(1 + k2/k1)2
.

It is clear that the transmission coefficient Tmax can be
larger than unity when k1 > k2. This indicates that the
negative reflection time corresponds to a maximum trans-
mission coefficient that is larger than unity. The fact that
transmission coefficient can be larger than unity doesn’t
violate the law of probability current conservation. The
transmission coefficient T is the ratio of the amplitude,
rather than the transmission probability, (k2/k1)T , de-
fined as the ratio of the probability currents carried by
the transmitted wave over the incident wave. In fact,
the transmission probability (k2/k1)T is always less than
unity.

In Figure 2 is shown the dependence of the group delay
time in transmission τt and the transmission coeffient T
on the thickness a of the barrier, where a is re-scaled to κa
and the unit of � and m is set to unity. The dotted curve
corresponds to the transmission probability that is less
than unity, where V0/E = 2, V1/E = 0.9, and V2/E = 0.8.
Conversely, the dashed curve corresponds to the transmis-
sion coefficient that is larger than unity, where V0/E = 2,
V1/E = 0.8, and V2/E = 0.9. As shown in Figure 2, the
transmission times in two cases are always equal to the
identical positive value, due to the symmetry. It is also
shown that the transmission time is independent of the
thickness a of the barrier in the opaque limit, which con-
firms the Hartman effect.

Figure 3 shows the dependence of the group delay
times in reflection τr on the thickness a of the barrier,
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Fig. 3. The dependence of the group delay time in reflection
τr on the thickness a of the barrier, where all the physical
parameters are the same in Figure 2, a is re-scaled to κa, and
the unit of � and m is set to unity. The solid curve corresponds
to the positive reflection time when V1 > V2. The dashed curve
corresponds to the negative reflection time when V1 < V2.

where all the corresponding physical parameters are the
same as in Figure 2, a is re-scaled to κa and the unit of �

andm is set to unity. The solid curve indicates the positive
reflection time when V1 > V2. Nevertheless, the dashed
curve indicates the negative reflection time when V1 < V2.
It turns out that the reflection times have close relation
to the relative height of the potential energies on the two
sides of the barrier. More interestingly, it is seen from Fig-
ure 3 that the negative reflection time for V2 > V1 can be
changed to a positive value when increasing the barrier’s
thickness a, and finally saturate to a positive constant
value for a sufficiently large barrier’s thickness.

From all these discussions, we draw the conclusion
that the reflection and transmission times for a sufficiently
large barrier always become independent of the barrier’s
thickness. Furthermore, the reflection time can be nega-
tive in evanescent case, and the corresponding maximum
transmission probability is larger than unity. As we know,
the group delay time is associated with the partial density
of state (PDOS) in some approximations, which represents
the contribution to the local density of states [4,32]. For an
arbitrary one-dimensional scattering problem, Gasparian
et al. [31] mentioned there that certain partial density of
states is not positive, which would lead to negative times.
In this section, the negative group delay obtained can oc-
cur only for a small thickness of the barrier and its magni-
tude is quite small. In what follows, we will show that the
reflection and transmission group delay times in the prop-
agating case depend periodically on barrier’s thickness,
thus can be greatly enhanced by transmission resonance.

4 Propagating case

In this section, we now turn to the case of propagating.
As shown in Figure 4, the quantum particles are scat-
tered by an asymmetric barrier, the height of which is

Fig. 4. Schematic diagram of the particles scattered by an
asymmetric single barrier from the left in the case where the
energy of incident particles is above the barrier.

less than the energy of incident particles. This is classi-
cally allowed motion. The particles in the region of bar-
rier have the real classical moving velocity, vc = �k/µ,
where k = [2µ(E − V0)]1/2/�. By replacing κ with ik, the
transmission time (5) in this case can be rewritten as [48],

τ ′t =
τc

4g′1
2

(
1 +

k2

k1

)

×
[
k

k1
+
k2

k
−

(
1 − k2

k2
1

) (
k

k2
− k2

k

)
sin 2ka

2ka

]
, (8)

where

g′1
2 =

1
4

(
1 +

k2

k1

)2

− 1
4

(
1 − k2

k2
1

) (
1 − k2

2

k2

)
sin2 ka.

Then, the reflection group delay time, τ ′r = τ ′t − τ ′0, can be
calculated from

τ ′0 =
τc

4g′2
2

(
1 − k2

k1

)

×
[
k2

k
− k

k1
+

(
1 − k2

k2
1

) (
k2

k
− k

k2

)
sin 2ka

2ka

]
, (9)

where

g′2
2 =

1
4

(
1 − k2

k1

)2

− 1
4

(
1 − k2

k2
1

) (
1 − k2

2

k2

)
sin2 ka.

As can be seen, the transmission and reflection times are
closely related to the periodical occurrence of transmis-
sion resonance, and thus can be larger as well as less than
the classical time, τc = a/vc. It is also noted that the
transmission and reflection times presented here still sat-
isfy the reciprocal relation, due to their own properties of
symmetry and asymmetry [48].

To illustrate its properties clearly, we consider the re-
flection time in the case of k1 ∼ k2 and k � k2. Under this
condition, the reflection time τ ′r will be dominated by τ ′0,
and its sign will be determined by the sign of τ ′0, since g′2

2
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Fig. 5. The dependence of the group delay times in reflection
and transmission on the thickness a of barrier, where a is re-
scaled to ka and the unit of � and m is set to unity. The
solid curve corresponds to the negative reflection time, where
V0/E = 0.75, V1/E = 0.5, and V1/E = 0.8. The dashed curve
corresponds to the positive reflection time, where V0/E = 0.75,
V1/E = 0.8, and V2/E = 0.5. Here the transmission time is also
depicted by dotted curve, which is identical in such two cases
as V1 > V2 and V1 < V2.

is much less than g′1
2. As a result, near the transmission

resonance, τ ′r can be approximated as

τ ′r ≈ − τc

4g′2
2

(
1 − k2

k1

) (
k2

k
− k

k1

)
. (10)

It is interesting to note that the reflection time τ ′r can be
either negative or positive. When k1 < k2 (V1 > V2), τ ′r
is positive. On the contrary, τ ′r is negative, when k1 >
k2 (V1 < V2). Compared with the reflection time (7) in
evanescent case, the reflection time as periodical function
of the barrier’s thickness can be negative for certain large
barrier’s thickness.

Figure 5 shows the dependence of the group delay
times in reflection and transmission on the thickness a
of the barrier, where a is re-scaled to ka and the unit of �

and m is set to unity. The solid curve corresponds to the
negative reflection time, where V0/E = 0.75, V1/E = 0.5,
and V1/E = 0.8. The dashed curve corresponds to the pos-
itive reflection time, where V0/E = 0.75, V1/E = 0.8, and
V2/E = 0.5. Here the transmission time is also depicted
by dotted curve. As shown in Figure 5, the transmission
and reflection times are in direct connection with the pe-
riodical occurrence of transmission resonance, ka = mπ
(m = 1, 2, 3...). Near the resonance points, the reflection
times are much larger than the transmission time. It is
shown that the group delay times can be greatly enhanced
by one or two order, compared to those in the evanescent
case. In addition, we also see that the reflection time is al-
most the same as the transmission one far from resonance.

Apart from the above-mentioned negativity of the re-
flection time, the reflection and transmission times have
other interesting properties at transmission resonance de-
serving being pointed out. When the transmission res-
onance ka = mπ (m = 1, 2, 3...) occurs, the trans-
mission coefficient T ′ = 1/g′1

2 reaches maximum value,

T ′
max = 4/(1 + k2/k1)2, and the transmission time reduces

to

τ ′tmax = τ ′t |ka=mπ =
k2 + k1k2

k(k1 + k2)
τc.

This indicates that τ ′t reaches maximum at ka = mπ, and
becomes larger than the classical time τc. Meanwhile, the
reflection probability R′ = g′2

2
/g′1

2 doesn’t vanish, so that
the reflected wave packet can be defined and the resonant
reflection time is given by,

τ ′r|ka=mπ =
2k1(k2

2 − k2)
k(k2

2 − k2
1)

τc.

We show that the reflection time can be negative when
k1 > k2 (V1 < V2), while the reflection time can be positive
when k2 > k1 (V2 < V1). These results are in agreement
with those in the case of k1 ∼ k2 and k � k2. Obviously,
the negative resonant peaks of the reflection time always
correspond to a maximum transmission coefficient T ′ that
is larger than unity. On the other hand, when ka = (m+
1/2)π, the transmission time becomes

τ ′t |ka=(m+1/2)π =
k(k1 + k2)
k2 + k1k2

τc.

It is implied that the transmission time far from resonance
is less than the classical time τc and always have a positive
value. Under above conditions of k � k2 and k1 ∼ k2, the
reflection time at ka = (m + 1/2)π tends to the trans-
mission time. Furthermore, it is worth mentioning in the
propagating case that the resonance condition ka = mπ
for transmission through a single barrier is the same as
that for the quasi-location of the states in the barrier re-
gion [42]. The resonant transmission time is of the order
of the quasi-bound state lifetime in the barrier region, and
the magnitude of the resonant reflection one is much larger
than the quasi-bound state lifetime [45]. As a matter of
fact, the negative reflection time for Breit-Wigner reso-
nance has been already reported by M. Büttiker [38].

Because of the analogy between Schrödinger’s equation
in quantum mechanics and Helmholtz’s equation in elec-
tromagnetism, these predictions have been observed ex-
perimentally in the so-called G-band waveguide of width
47.5 mm [48], where the asymmetric quantum barrier was
obtained by reducing the inside width of the waveguide,
leading to the effective widths of 40.5 mm and 30.5 mm.
The resonance-enhancement of the group delay times is
clearly shown, as expected by the theoretical explanation
above. Incidentally, the negative group delay and Hartman
effect in the evanescent case can be further demonstrated
in the same experimental setup.

Finally, we consider the validity of the above theoreti-
cal results. For the validity of stationary-phase approxima-
tion, that is, for the distortion of the reflected wave packet
to be negligible, the thickness of the barrier is required to
be [48],

a ≤ 2vcw sin−1 k0|k1 − k2|
[(k2

1 − k2
0)(k

2
2 − k2

0)]1/2
. (11)
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Within the restriction, the temporal wave packet can
travel through the asymmetric barrier with negligible dis-
tortion in the case of propagation. In the tunneling regime,
by contrast, the imaginary value of κa turns this periodi-
cal oscillation into a hyperbolic function. The phase varies
smoothly from about π/2 at E = V0 to −π/2 at E = 0,
thus the stationary phase method doesn’t break down in
the tunneling process, as pointed out in the literature [14].

5 Conclusions

We have investigated systemically the group delay times in
reflection and transmission for quantum particles through
an asymmetric single quantum barrier. It is found that
the reflection times can be negative as well as positive
in both evanescent and propagating cases. The negative
reflection time is closely related to the relative height of
the potential energies on the two sides of the barrier, and
always corresponds to that a maximum transmission co-
efficient is larger than unity. In the evanescent case, the
reflection and transmission times for an opaque barrier are
always independent of the barrier thickness, which are the
so-called “Hartman effect” in reflection and transmission.
When the energy of the incident particles is above the po-
tential barrier, the reflection and transmission times as the
periodical function of the barrier thickness can be greatly
enhanced by transmission resonance. In addition, we also
show that the transmission and reflection times satisfy
the reciprocal relation in the same asymmetric configura-
tion from time-reversal symmetry. In fact, these negative
group delay times in reflection don’t imply the violation
of the principle of causality and the negative propagation
velocity. The negative group delay times do result from
the reshaping [15] of the reflected wave packet, since each
Fourier component undergoes the different phase shifts.
We hope that this work may lead to novel applications
in electronic devices, such as quantum mechanical delay
line and high-speed electronic devices for two propagation
directions [46].

The authors are indebted to G. Nimtz, J.G. Muga, and J.C.
Martinez for their helpful discussions and suggestions. This
work was supported in part by the National Natural Sci-
ence Foundation of China (Grants 60377025 and 60407007),
Shanghai Municipal Education Commission (Grants 01SG46
and 04AC99), Science and Technology Commission of Shang-
hai Municipal (Grants 03QMH1405 and 04JC14036), and the
Shanghai Leading Academic Discipline Program (T0104).

References

1. E.H. Hauge, J.A. Støvneng, Rev. Mod. Phys. 61, 917
(1989)

2. R. Landauer, Th. Martin, Rev. Mod. Phys. 66, 217 (1994)
3. R.Y. Chiao, A.M. Steinberg, Tunneling Times and

Superluminality, edited by E. Wolf, Progress in Optics Vol.
XXXVII (Elsevier B.V. Science, Amsterdam, 1997), p. 345

4. Time in Quantum Mechanics, edited by J.G. Muga, R.
Sala Mayato, I.L. Egusquiza (Springer, Berlin, 2002)

5. G. Nimtz, Prog. Quantum Electron. 27, 417 (2003)
6. E.H. Visscher, J. Lindeman, S.M. Verbrugh, P. Hadley,

J.E. Mooij, W. van der Vlueten, Appl. Phys. Lett. 68,
2014 (1996)
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Büttiker, H. Thomas, A. Prêtre, Phys. Lett. A 180, 364
(1993)

31. V. Gasparian, T. Christen, M. Büttiker, Phys. Rev. A 54,
4022 (1996)
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